Seasonal evolution and spatial distribution of weathering in western Greenland
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Chemical weathering & climate 1. Average watershed values Silicate weathering: Biotite weathering: Excess solutes: 3. Seasonal variation of chemical weathering
- Chemical weathering of silicates in glacial forelands may be either a sink or Carbonate weathering: - Increases toward coast in Preferential weathering of biotite The majority of excess solutes in - Lake Helen deglacial watershed shows little variation in dominant
source of atmospheric CO, dependent on rock type', intensity of weathering? . - deglacial watersheds greatest in recently exposed wa- all watersheds consists of Na and minerals being weathered downstream or through melt season (Fig. 6)
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the availability/fate of carbon in the region?, and subglacial redox conditions*s weathering in all watersheds, and (DG-1=2 %TDS, DG-C =13 %TDS) tersheds (DG-1 =8 %TDS, HCO,. Excess solutes are greatest carbonate > aerosol influence > biotite > silicate = sulfide oxidation
’ - Enhanced silicate weathering in PG =16 %TDS) and decreases with in coastal and glacial watersheds, : :
- Previous studies indicate incongruent weathering of trace minerals (biotite, decreases toward the coast . o J . . ) . J , - Overall importance of carbonate weathering decreases through the
, , , , o glacial watershed (PG =18 %TDS, increasing exposure age which have the most dilute d silicat R : th h th It
carbonate, sulfides) predominates in recently exposed land near alpine glaciers (DG-C =34 %TDS, DG-l =57 %TDS, 0 - o . seéason and silicate weathering Influences increases through the me
.. o , e o SG =26 %TDS) indicates low (DG-C =2 %TDS) waters. In dilute water, fine- season at the Watson River (Fig. 7)
and proceeds to a more congruent/silicate weathering signature with age*® PG=5G=42%TDS) , . . . . 9.7/).
water:rock ratios, long flowpaths, Sulfide oxidation: grained sediments tend to retain o | S
- Subglacial discharge from large ice bodies should record a more Aerosols: and/or the connection of isolated Highest in the subglacial and divalent cations and release - Peaks in silicate weathering and minima in biotite and carbonate
congruent/silicate weathering signature as isolated portions of the subglacial Increased importance toward the portions of the subglacial coastal watersheds indicating 2 monovalent cations?, potentially weathering at proglacial headwaters (Fig. 7) are consistent with the
hydrological system are incorporated into flow to the proglacial system? coast (DG-C =30 %TDS5, hydrological system cocondary source of acid to accounting for this signal. connection of isolated portions of the subglacial hydrological system that
DG-I = 25 %TDS, PG =5 %TDS, y - records a more extensive weathering signature at high discharge
. . SG = 9 %TDS) weather carbonates and silicates
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: ' 2 =[ - 2 Figure 3. Percent of solute attributed to carbonate weathering at a) Sisimiut, b) Nerumaq, ¢) Qorlortoq, d) Lake Helen, and e) Watson River/proglacial <28 | 0000900 C00~~08005000 High *Sr/5r values are
- Hydrochemical data applied to a stoichiometric mass balance scheme gure . 9 ' 9 9 ' Prog - attributed to the
modified for weathering conditions and minerals present in field area (e.g., Nerumag Qorlortoq  Watson | preferential weathering
plagioclase composition adjusted to 26% anorthite?) ¢ & 59 River | of biotite, which has
. Coast g > Ice Sheet weathered away in
Mass balance steps: (West) (East) older terrains®.
1) Account for seawater aerosol inputs with element:Cl molar ratios. All Cl assumed to originate PS
from aerosols. Na:Cl=0.85, Mg:Cl = 0.095, K:Cl = Ca:Cl = 0.019, SO,:Cl = 0.05 & T ® ’.
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2) Plagioclase (An ) weathering to kaolinite:Na _,Ca , Al . Si., O, +1.26 H.CO, + 0.63 H,0 = > %% <& & <><> pe 2 CO NCI—U SIO N S
0.74 Na* + 0.26 Ca** + 1.26 HCO," + 1.48 SiO, + 0.63 AL Si_O,(OH), & 6 = . .
, o ' ° As the Greenland Ice Sheet recedes, the deglacial land area characterized by a
3) Sulfide mineral oxidation: FeS, + 3.750,+2H,0=250,~+4 H"*+ 0.5 Fe O, - : i : : :
R 1 greater extent of silicate weathering will increase. Intensified ice melt will
4) Carbonate weathering by sulfuric acid from step 3: CaCO, + 2 H*=Ca** + CO_+ H.O k < - : - : :
I P ’ S Figure 4. Percent of solute attributed to biotite weathering to vermiculite at a) Sisimiut, b) Nerumag, c) Qorlortoq, d) Lake Helen, and e) Watson River/proglacial potent!ally connect {solajcgd portions Of the §ungaC|aI hyd rologic sy.stem,
5) K-feldspar weathering to kaolinite: imparting an extensive silicate weathering signature on the proglacial
KAISi,O, + H,CO, + 0.5 H.O = K* + HCO, + 2 SiO, + 0.5 ALSi_O.(OH), ¢ 517 watershed. Preferential biotite and carbonate weathering will still prevail in
6) Biotite weathering to vermiculite: 1 K*: 1 HCO, areas of active sediment production, but the overall weathering signature
7) Carbonate weathering by carbonic acid: (Ca,Mg)CO, + H,CO, = (Ca?*,Mg**) +2 HCO,’ —~ should shift toward silicate weathering and affect the global carbon cycle
u L 4 . through the drawdown of atmospheric CO,. The extent of this signal and the
O 9.5 R : : : :
P —— R O . 8 m < - overall land area available for weathering will be modified by sea level changes.
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